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State of the art. It is well-known that standard finite element discretizations of elliptic model
problems on two-dimensional domains with re-entrant corners on a sequence of uniformly refined
meshes do not guarantee optimal order convergence. In the presence of re-entrant corners with
interior angle m < w < 27 the solution will, in general, have singular components of type r7/¥ even
when the data are smooth; here, r denotes the distance to the singular corners. As a consequence,
only reduced convergence rates are obtained by standard finite element methods on quasi-uniform
meshes, see, e.g., [6]. Various approaches to recover the full convergence order for finite element
methods have been considered in the literature. Quite often methods based on local refinement,
see, e.g., [3, 4, 5, 14, 15], are used. An alternative approach is based on the enrichment of the finite
element space by suitable singular functions [11, 20]. However both approaches result in global
modifications. In order to restore the full convergence order in weighted norms, we consider in
this project energy corrected finite elements which are based on local modifications of the discrete
problems using the techniques introduced in [21]; see also [17, 19] and analyzed in [10, 18]. The
required modifications are local, i.e., they only affect degrees of freedom associated to an O(h)
neighborhood of the singular point. As a consequence, the structure and all but a finite number
of entries in the stiffness matrix remain unchanged which makes it extremely attractive in case of
many re-entrant corners.

Thesis project to be supervised by B. Wohlmuth. In this project thesis, we now generalize
energy corrected finite elements to optimal control problems with main focus on boundary control
and to the Stokes system. However, in a first step we will also investigate the standard elliptic
Laplace operator based PDE setting. For previous work on numerical analysis of Dirichlet
boundary control problems, we refer to, e.g., [1, 2, 7, 8, 9, 13, 16]. While convex domains are
well studied, the theory for the non-convex case is less understood and many open questions
exist. We will provide an a priori error analysis restoring optimal convergence order and removing
the pollution effect resulting from the the re-entrant corners. To do so, we have to consider
the singular components, e.g., for the Stokes system and introduce locally defined corrections
depending on the interior angle and the used finite element type, e.g. Taylor-Hood or MINI. For
the formulation of the optimal control problem, we assume that the desired state 4 € L?(Qops)?
for the observation domain Qs C € and the right-hand side f € L?(2)2, which prescribes a
given force acting on the fluid. As a model problem, we consider an optimal Dirichlet boundary
control problem for the Stokes equations, see, e.g., [12], which is given as follows: Minimize the
cost functional
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where || - ||« is a suitable norm restricted to the control boundary I'c, subject to the constraint

—vAu+Vp=f in Q,
divu=0 in Q,

u=2z onl¢q,

u=g onlIp,

v(Vu)n—pn=0 on Iy,

and the additional control constraints z, < z < z; a.e. on I'c. As standard I'g, 'y and I'p form
a partition of the boundary 0€2. Of special interest for us are domains with multiple re-entrant
corners, as they appear in several applications for optimal control problems, such as shown in the
following figure.
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Figure 1: Domains of interest with multiple re-entrant corners

These ideas can be also applied to other control settings, such as Neumann boundary control or
distributed control.

A PhD candidate for such a project needs to have a strong background in numerical analysis as well
as regularity theory and weighted Sobolev spaces. But also a strong interest in implementational
aspects and performance considerations is required.
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