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This project investigates optimal control approaches for image sequence interpolation based
on optical flow. The underlying transport equation, the optimization problem, and optimality
conditions are investigated in suitable function space settings. Adjoint-based optimization methods
that meet the needs of modern data terms and regularizations are developed.

State of the art. Using measurements of a continuous image sequence with intensity (brightness)
I:Qx[0,T] = Ry where Q C R? (e.g., d = 2, Q rectangle), optical flow computations aim
at determining the travel velocity b(z,t) of the points € Q for selected times ¢ € [0,7]. The
underlying optical flow constraint is a transport equation that expresses the constancy of intensities
along point trajectories:  I(z,t) + b(x,t) - VyI(z,t) = 0.

The analysis of this transport equation (existence, uniqueness, continuity or differentiability with
respect to parameters) requires care, especially if b is nonsmooth [1, 10, 12, 22].

Typical optical flow approaches reconstruct b on a grid by inserting data-based approximations of
I; and VI into the optical flow equation. Further constraints or regularizations are required to
make the problem well-posed and numerous proposals for this exist, e.g. [8, 9, 23, 27, 25]. Many
optical flow computations follow Horn and Schunck [15] and minimize the sum of a data term,
involving the above spatio-temporal derivatives of I, and a regularization term.

Similar to [5, 6, 10, 11], this project will obtain an approximation of the whole velocity field on
Q :=Q x (0,T) from data I; for I(t;) at times t; € [0,7], 0 < j < N. To this end, an optimal
control problem (P) of the following form is solved:

miny, 7 Z;\le D(I(tj),1;) + R(b) st. I;+b-V,I =0 inQ, I(0)=1Iy (4 other constr.).

Here, D is a data (regression) term, e.g., D(I(t;),1;) = ||I(tj)—Ij||%2(Q)/2 and R is a regularization
term. D or R sometimes include structured nonsmoothness (such as TV- or L!-terms) or smoothed
versions of them. Prior knowledge on b and I can either be expressed as constraints or via
regularization terms. There also exist promising connections between optical flow and optimal
transportation [16, 20] that will be explored.

Thesis project to be supervised by Michael Ulbrich. This project investigates theoretical and
numerical aspects of image sequence interpolation from the perspective of PDE-constrained
optimal control with optical flow constraints. For the development of a suitable function space
setting, a particular challenge consists in devising appropriate, weak assumptions on b such that
the optical flow equation possesses solutions I that are stable with respect to b. Based on work on
transport equations with nonsmooth coefficients [1, 7, 12, 13] such existence and stability results
shall be derived and the existence of solutions to the regularized inverse problem will be studied.
In this context, suitable regularization terms and constraints shall be investigated. A starting
point is, e.g., [10], where the case b € L?(0,T; H3(2)?) and divb = 0 is considered. For applying
optimization theory and methods, the differentiability properties of the optical flow equation have
to be studied and a consistent solution concept for the forward and adjoint equations is required.
Taking into account the challenges of shock movements [22], the optimality system will be derived



and results on the differentiability of the reduced objective function will be developed.

We will initially use a problem formulation (P) similar to [10] and [5, 6]. The problem complexity
will then gradually be extended, with suitable adjustments to the respective studies. For instance,
the constraint divb = 0 in [10, 11] is convenient, but not always justifiable and Sobolev regu-
larizations usually are too strong. Instead, robust regularizers (e.g., Huber-type, L', TV) have
proven advantageous [8, 26, 27|. They introduce additional nonlinearity and nonsmoothness that
have to be addressed. Other regularizations, e.g., using fundamental matrices [25, 23] or subspace
constraints [14] would also be interesting to study in our setting. Algorithmically, we can start
from our preliminary implementation of an adjoint-based first order method similar to [10] and a
basic coarse-to-fine nested iteration. We will study and implement accelerated first-order methods,
building on earlier experience [18, 21] and we also will work on improvements of the multilevel
approach. Nonsmooth regularization terms shall be handled by splitting methods, where variants
of proximal splitting [2, 4, 21] and of primal-dual [17, 19, 24] methods will be investigated. Jointly
with K. Bredies, we also will explore promising connections to optimal transport [16, 20] (cf.
Further topics). The Middlebury benchmark [3] will be used to test the developed algorithms.

Further topics. This IGDK-project started in 2014 and P. Jarde (PhD student, TUM) will
continue to work on it. During his visit (3-5/15) to Graz, he and K. Bredies started joint research
(which will be continued) on image interpolation strategies where the optical flow constraint
might be relaxed. It bases on the observation that latter can be written as the inhomogeneous
conservation law I; + div, (Ib) = Idiv, b, motivating optimal transport approaches. Assuming
that div, b = 0, the image interpolation problem can then be solved by convex minimization with
respect to I and w = Ib, [16, 20]. We expect a similar behavior if div, b is known and will study
how this can be incorporated into the optimization framework. One approach will be to penalize
div, b as well as to introduce the bilinear constraint w = Ib or a relaxation of it. Without the
latter, the optimization problem can be made convex, in particular giving rise to new algorithmic
strategies that exploit this specific structure.
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