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The image acquisition process in magnetic resonance imaging (MRI) bases on the manipulation of
hydrogen nuclei magnetic moments by magnetic fields. These are essentially described by the so-
called net magnetization vector which is governed by the Bloch equation. This equation depends on
several parameters which, in common MRI, have an indirect influence on the reconstructed images.
Recently, with a technique called MR fingerprinting (MRF), first attempts were made to recover
all parameters directly and simultaneously using a unified acquisition strategy. Mathematically,
these were determined by template matching for a set of precomputed solutions of the Bloch
equation. In this project, the parameters are directly recovered from the Bloch equation by solving
the associated parameter estimation problem.

State of the art. The development of acquisition and reconstruction techniques in MRI is a highly
active interdisciplinary field of research. Currently, various qualitative imaging techniques such as
T1 and T2 weighted imaging are well-established in terms of data acquisition and acceleration in
terms of undersampling and “compressed sensing” [11, 9, 10]. In contrast, T1 and T2 mapping
approaches require dedicated acquisition strategies tailored towards the measurement of specific
parameters [6, 4], also in the undersampling case [7, 8]. With the recently introduced MRI
fingerprinting approach [12], the simultaneous recovery of the relaxation times and spin density
was performed using a uniform and simple acquisition strategy. However, this approach massively
relies on large collection of data, even in the case of undersampling. Recently, more appropriate
compressed sensing reconstructions have been incorporated in the MRF process [5], however, a
full modeling and undersampling reconstruction directly based on the Bloch equations has not
been performed so far.

Thesis project to be supervised by Kristian Bredies. This project will be concerned with the
study of the parameter identification problems for the Bloch equation in the context of MRI. The
mathematical problem is to determine the spatially-varying relaxation parameters T1, T2, spin
density ρ and components of the field inhomogeneity δB in the Bloch equation ∂M
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 , M(0) = (0, 0, ρ) (1)

for the net magnetization vector field M = (Mx,My,Mz) and a given spatio-temporal dependent
magnetic flux field B (which will be influenced during the acquisition process). The data
available in order to solve the problem will correspond to the voltage which is induced in the MR
measurement coils reading as, up to factors,

si(t) =
∫
R3
Ci ·

∂M
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(t, x) dx (2)
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where Ci : R3 → R3 is the sensitivity vector field associated with the i-th receive coil. Usually, si
is available on several data-acquisition time intervals [t0, t1], depending on the utilized imaging
sequence. Then, the problem of determining the MR parameters is finding T1, T2, ρ and δB subject
to (1) and (2) in a Ω ⊂ R3, which is a parameter identification problem for the Bloch equation
subject to linear constraints. It will be studied in terms of solvability of associated optimization
problems. As undersampling will be involved and the data is assumed to be incomplete, the
basic approach will be to minimize a suitable “sparsifying” penalty subject to the measurement
constraints. As the total generalized variation (TGV) turned out to be successful in the context
of undersampling MRI [2, 9], the problem

min
T1,T2,ρ,δB

TGVkα(T1, T2, ρ, δB) subject to (1) and (2) (3)

is considered, where TGVkα is the k-th order total generalized variation (typically, k = 2) with
weights α measuring simultaneously, in a suitable vectorial sense, the regularity of all of its
arguments. As this problem is non-convex, non-smooth and incorporates linear constraints, it
may numerically be solved, for instance, by [1].

Furthermore, convex relaxation approaches will be studied within the project, as these turn out
to possess desirable properties with respect to global minimization. One approach will be to “lift”
the parameters in (1) responsible for the non-convexity, for instance, neglecting δB, the quantities
T1 and T2. Such a lifting basically represents the parameters T1 and T2 by a delta peak δ(T1,T2).
Denoting P as the parameter space, a convex relaxation approach would then recover a positive
Radon measure µ on Ω× P whose projection onto Ω is absolutely continuous with respect to the
Lebesgue measure. For this approach, a lifted version of (1) as well as TGV has to be found and
analyzed such that (3) becomes convex with respect to µ. As the concentration of the measure
with respect to parameter space cannot be enforced in a convex manner, a suitable “sparsifying”
penalty such as the Radon norm will be incorporated. Consequently, the optimization problem (3)
becomes a problem in Radon space which can, analytically and numerically be treated by the
techniques presented, for instance, in [3].

The goals of the project can be summarized to be:

(a) To study, analytically and numerically, the parameter estimation problem for the Bloch
equation (3) in function space for realistic situations in undersampling MRI,

(b) to develop a convex relaxation framework in order to support numerical minimization
algorithms in finding more global solutions.

Further topics. The proposed parameter estimation framework for the Bloch equations has
natural extensions regarding the incorporation of physical effects which are not covered by the
Bloch equation. For instance, diffusion processes may also be measured leading to diffusion
MRI. A possibility to model these processes is given by the Bloch-Torrey equation [13] which
constitutes a linear diffusion equation with diffusion tensor as a parameter to be identified. While
the framework essentially remains the same, additional effort is required in order to incorporate
such equations which are now partial differential equations.
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