P 5 Boundary control problems in polyhedral domains
(Th. Apel, O. Steinbach, B. Vexler) — AO, NS, IS

The project deals with finite element error estimates and mesh refinement strategies for elliptic
boundary control problems (AO) with special focus on the peculiarities coming from the consider-
ation of three-dimensional non-smooth domains (NS), possibly with interfaces separating different
materials (IS).

State of the art. The model problems for the project are

minimize 11y — yal2aqy + Slul?
subject to —Ay+y=fin Q, Ony = uw on OS2 (Neumann control),
or subject to —Ay = fin Q, y = u on OS2 (Dirichlet control),

where ) is a non-smooth domain. Box constraints on the control are admissible.

In recent years various discretization and regularization strategies have been described and
analyzed for such problems in the literature, see, e.g., [8, 11, 12, 7] for Neumann control problems
and [10, 9, 13, 14] for Dirichlet control problems. While these authors either considered sufficiently
regular solutions or proved reduced convergence orders for the case of singular solutions, optimal
convergence for methods using locally graded meshes were derived in the predecessor project for
Neumann control problems in non-smooth domains [5, 15, 16]. A similar analysis for Dirichlet
control problems started recently [3]. Let us consider the results for non-smooth domains and
adapted triangulations in more detail.

(1) For Neumann control problems with U = L?(T'), discretization error estimates in the L*-norm
have been derived for variational discretization and for the postprocessing approach in the 2D
[5, 15] and in the 3D [16] case where isotropically graded meshes were investigated. L*°-error
estimates which are also of major interest, have been derived in [6] for a distributed control
problem for a Dirichlet problem, but not for boundary control.

(2) Neumann control problems were also investigated with regularization in energy space [7, 16]
in 2D. Interesting features are that the control tends to infinity near non-smooth parts of the
boundary in the unconstrained case such that the control becomes more regular in the constrained
case. In the latter case the largest convex interior angle of the domain determines the regularity
of the solution. Quasi-uniform meshes yield full convergence order if the maximal interior angle is
less than 27 /3; mesh grading is suited to obtain optimal convergence. In the constrained case the
theory is not yet complete.

(3) Dirichlet control problems with U = L?(T") are analyzed currently in joint work of Th. Apel
and J. Pfefferer (postdoc in the IGDK) with M. Mateos, S. Nicaise and A. Résch [3, 4].



Thesis project to be supervised by Thomas Apel. (1) For Neumann control problems with
U = L*(T), the task is to prove error estimates in the L°-norm in 2D on the basis of [6, 15].
The 3D case is rated too challenging for a PhD student; L*°-error estimates on graded meshes
are not yet proven for the boundary value problem. (2) For Neumann control problems with
U = H~'/2(T"), the task is to complete the analysis of the 2D case and to extend it to the 3D case.
(3) A third task is the extension of the 2D analysis of Dirichlet control problems with U = L?(T")
to the 3D case. (4) Numerical tests have shown that mesh grading not only to the singular parts
of the boundary but to the whole boundary leads to a convergence rate in the control of almost
2, compared to 1 for general meshes and % for superconvergence meshes without this kind of
refinement. The task of the student is to analyze this phenomenon.

Further topics. It has been known for long time, [1], that anisotropic mesh grading near edges
is sufficient for optimal convergence of Dirichlet boundary value problems if the error is measured
in energy or L?(£2)-norm, see [2] for a recent contribution. The analysis of such a strategy for
the discretization of boundary control problems is a hard open problem since error estimates in
L>(Q) and L*(T) are not yet proven for the boundary value problem.

Parabolic boundary control problems and sparse control problems in non-convex domains can be
considered in cooperation with the group of B. Vexler.

State constraints were not mentioned in the description of the project but lead to further challenges
of the numerical analysis.

Other state equations are of interest. In particular it is expected that the cooperation with the
project on Volume-surface reaction-diffusion systems: analysis, numerics, control, and optimality
issues (with K. Fellner and B. Vexler) leads to new questions for the numerical analysis.

Elliptic equations with discontinuous coefficients have singular parts in their solution with similar
structure as near corners and edges. However the leading singularity can become more severe
such that some steps in the numerical analysis cannot be directly transferred to this case.
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